The Synthesis and Structure of Bis($2,2^{\prime}$-bipyridine) $-\mu$-methoxo- μ-nitritodinitritodicopper(II)

By A. Camus, N. Marsich and G. Nardin
Istituto di Chimica, Università di Trieste, 34127 Trieste, Italy

(Receired 30 August 1976; accepted 26 October 1976)

Abstract

The synthesis, chemicophysical characterization and crystal structure of bis($2,2^{\prime}$-bipyridine) $-\mu$-methoxo $-\mu$ -nitrito-dinitritodicopper(II) are reported. The compound crystallizes in the monoclinic system, space group $C 2 / c$, with $a=16.633$ (8), $b=8.320(6), c=18.986$ (9) $\AA, \beta=114.6(1)^{\circ}, Z=4$. The structure was solved by standard heavy-atom Patterson and Fourier methods. A least-squares refinement, based on 1470 independent refexions, reduced R to 0.048 . The crystals consist of dimers formed by two $\mid \mathrm{Cu}\left(\mathrm{NO}_{2}\right)($ bipy $) \mid$ moieties bridged by one MeO and one NO_{2} group with a $\mathrm{Cu} \cdots \mathrm{Cu}$ distance of 3.403 (1) \AA. . Each Cu atom has a slightly distorted tetragonal-pyramidal coordination. The basal atoms are the two bipyridine N atoms and two O atoms, one from the methoxo and one from the non-bridging nitrito group.

Introduction

Recently we have studied some mixed Cu^{1} complexes of dinitrophenylmethane (Camus, Marsich \& Mosca, 1976: Camus, Marsich, Nardin \& Randaccio, 1975), nitrophenylmethane (Marsich \& Camus, 1976) and nitromethane (Marsich \& Camus, 1976; Camus, Marsich, Nardin \& Randaccio, 1976) with tertiary phosphines or heterocyclic N donors. The complexes of nitrophenylmethane undergo a facile cleavage of the $\mathrm{PhCH}=$ group, with formation of nitrito complexes of Cu^{l}. The latter are easily and irreversibly oxidized by O_{2} in the case of complexes with N bases and the main autoxidation product of Cu (bipy) NPM ($\mathrm{NPM}=$ nitrophenylmethane) in MeOH was found to correspond to the unexpected formula $\left[\mathrm{Cu}_{2}(\text { bipy })_{2}\left(\mathrm{OCH}_{3}\right)\left(\mathrm{NO}_{2}\right)_{3}\right]$ (I). Since, on the basis of its infrared and visible spectra, it seems to be a completely new compound among the numerous known nitrito complexes of Cu^{11} with bipy and phen (Marsich \& Camus, 1976; Harris, Lockyer \& Waterman, 1961; Procter, Hathaway, Billing, Dudley \& Nicholls, 1969; Proctor \& Stephens, 1969; Stephens, 1969: Hathaway, Procter, Slade \& Tomlinson, 1969) we thought it would be interesting to determine its solidstate structure.

Experimental

Preparation

At first the complex was obtained by bubbling O_{2} for 18 h into a methanolic suspension of [Cu(bipy)NPM] at room temperature. A green powder precipitated on concentration of the obtained solution and addition of ether. Later a more convenient route was found, namely the recrystallization from hot methanol of
$[\mathrm{Cu}(\text { bipy })(\mathrm{OH})]_{2}\left(\mathrm{NO}_{2}\right)_{2} .4 \mathrm{H}_{2} \mathrm{O}$ (Marsich \& Camus, 1976). The dark-blue crystals gave a deep-green solution, with a little green-blue residue, which was filtered off. From the clear solution deep-green crystals were formed on cooling which had a m.p. of 204$205^{\circ} \mathrm{C}$ (samples of some runs exploded at about $200^{\circ} \mathrm{C}$). The calculated composition for $\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{Cu}_{2}{ }^{-}$ $\mathrm{N}_{7} \mathrm{O}_{7}$ was $\mathrm{C}: 41.45, \mathrm{H}: 3 \cdot 14, \mathrm{Cu}: 20 \cdot 88$, $\mathrm{N}: 16 \cdot 11$, $\mathrm{MeOH}: 5 \cdot 26 \%$; the composition found was C: $41 \cdot 1$, H: $3 \cdot 00, \mathrm{Cu}: 20 \cdot 9, \mathrm{~N}: 15 \cdot 9$, MeOH: $5 \cdot 5 \%$. MeOH was determined by GLC after hydrolysis of the complex by NaOH , with benzene as internal standard and addition of bipy to facilitate solution of the complex. The conductivity at $25^{\circ} \mathrm{C}$ in MeOH was 129.8 $\Omega^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$.

Crystal data

The crystal data are given in Table 1. Cell parameters were determined from Weissenberg and precession photographs taken with Co $K \alpha$ radiation and refined by a least-squares fit of the diffractometer 2θ, χ, ψ setting angles for 21 accurately centred reflexions in the 2θ range $21-38^{\circ}$. A prismatic crystal, about $0.41 \times 0.23 \times 0.70 \mathrm{~mm}$, was mounted on a Siemens diffractometer and intensity data were collected by the

Table 1. Crystal data

[^0]$\theta-2 \theta$ scan mode with Mo $K \alpha$ radiation to a 2θ (max.) of 54°. The reflexions with $I_{o}<3 \sigma\left(I_{o}\right)$ were rejected; the remainder (1470) were corrected for Lorentzpolarization factors and were used in the subsequent calculations. No absorption correction ($\mu \bar{r}=c a 0.6$) was applied.

Structure determination and refinement

The structure was solved by conventional Patterson and Fourier methods. The centrosymmetric space group $C 2 / c$ was assumed and its choice was confirmed by the subsequent successful refinement. Least-squares isotropic refinement reduced R to 0.081 . After anisotropic refinement, a three-dimensional difference Fourier synthesis was calculated to locate the H atoms. Calculated positions ($\mathrm{C}-\mathrm{H}=1.08 \AA$) of these occurred in regions of positive electron density for all atoms, with the exception of the three H atoms of the methoxy group, which appeared to be disordered.

The final anisotropic block-diagonal least-squares refinement gave $R=0.048$. The coordinates and temperature factors of the H atoms (B was set at $5 \cdot 0 \AA^{2}$) were not allowed to vary. The final weighting scheme
was $w=1 /\left(A+B\left|F_{0}\right|+C\left|F_{0}\right|^{2}\right)$, where $A=11 \cdot 0, B=$ 1.0 and $C=0.004$ were chosen to maintain $w\left(\left|F_{\rho}\right|-\right.$ $\left.\left|F_{\mathrm{c}}\right|\right)^{2}$ essentially constant over all ranges of $\left|F_{0}\right|$ and $\sin \theta / \lambda$. The numbering scheme for the atoms is shown in Fig. 1. Final atomic parameters are listed in Table 2, bond lengths and angles in Table 3 and equations of some least-squares planes, with the displacements of

Fig. 1. A view of the molecule showing the atom-numbering scheme.

Table 2. Fractional coordinates $\left(\times 10^{4}\right)$ and anisotropic temperature factors $\left(\times 10^{4}\right)$, with estimated standard deviations in parentheses
$\beta_{i j}$ are the coefficients in the expression: $\exp l-\left(\beta_{11} h^{2}+\beta_{12} h k+\beta_{13} h l+\beta_{22} k^{2}+\beta_{23} k l+\beta_{33} l^{2}\right) \mid$.
(a) Non-hydrogen atoms

	x	y	z	β_{11}	β_{12}	β_{13}	β_{22}	β_{23}	$\beta_{3,}$
Cu	742 (0)	1557 (1)	3445 (0)	33 (0)	-4 (1)	34 (0)	138 (1)	7 (1)	33 (0)
$\mathrm{O}(1)$	-280 (3)	1265 (8)	3789 (3)	63 (2)	26 (9)	56 (3)	285 (12)	27 (8)	52 (2)
O(2)	134 (4)	3517 (9)	4199 (4)	72 (3)	-60 (11)	49 (4)	357 (14)	-53(10)	61 (2)
O(3)	523 (7)	-2037(15)	3021 (7)	85 (5)	157 (18)	37 (8)	226 (22)	104 (18)	74 (5)
$\mathrm{O}(4)$	-373 (6)	-762 (14)	2152 (6)	143 (4)	-2 (16)	122 (5)	96 (19)	26 (14)	66 (4)
O(5)	0 (0)	2662 (7)	2500 (0)	36 (2)	0 (0)	22 (3)	116 (8)	0 (0)	34 (2)
$\mathrm{N}(1)$	1897 (3)	1971 (6)	3329 (3)	35 (2)	-16(6)	34 (2)	146 (8)	-6 (6)	34 (2)
$\mathrm{N}(2)$	1619 (3)	558 (7)	4447 (3)	44 (2)	-2 (7)	41 (2)	151 (9)	9 (6)	37 (2)
$\mathrm{N}(3)$	-373 (4)	2489 (10)	4143 (4)	56 (2)	-16(11)	54 (3)	315 (15)	-19(10)	50 (2)
N(4)	380 (7)	-760 (16)	2864 (7)	142 (5)	-28(17)	126 (6)	37 (19)	18 (16)	74 (4)
C(1)	1974 (4)	2763 (9)	2732 (4)	49 (2)	-36 (9)	44 (3)	185 (10)	-0 (8)	37 (2)
C(2)	2795 (4)	2937 (10)	2696 (4)	52 (2)	-39(10)	57 (3)	222 (12)	-17(9)	43 (2)
C(3)	3543 (4)	2260 (11)	3273 (4)	44 (2)	-22(11)	54 (3)	239 (14)	-28(10)	49 (2)
C(4)	3460 (4)	1401 (9)	3878 (4)	41 (2)	-5 (10)	43 (3)	212 (13)	-8(9)	43 (2)
C(5)	2623 (4)	1307 (7)	3890 (3)	35 (2)	-10(7)	28 (3)	139 (10)	-17(7)	35 (2)
C(6)	2464 (4)	483 (8)	4521 (4)	40 (2)	-25 (8)	27 (3)	143 (9)	-12(7)	33 (2)
C(7)	3121 (4)	-286 (9)	5145 (4)	43 (3)	-21(10)	15 (4)	188 (11)	16 (9)	42 (3)
C(8)	2907 (5)	-964 (10)	5724 (5)	56 (3)	-51(11)	7 (5)	190 (11)	30 (10)	40 (2)
C(9)	2054 (5)	-870 (10)	5658 (4)	64 (3)	-39 (11)	35 (4)	210 (12)	23 (9)	40 (2)
$\mathrm{C}(10)$	1414 (4)	-109 (9)	5002 (4)	56 (3)	-16(10)	51 (3)	200 (12)	25 (8)	42 (2)
C(11)	0 (0)	4394 (11)	2500 (0)	44 (4)	0 (0)	41 (5)	156 (14)	0 (0)	50 (3)

(b) Calculated hydrogen atom coordinates $\left(\times 10^{4}\right)$: hydrogen atoms are numbered according to the atom to which they are bonded

	x	y	z		x	y	$=$
H(C1)	1396	3263	2281	H(C7)	3781	-362	5185
H(C2)	2844	3585	2229	H(C8)	3406	-1549	6213
H(C3)	4176	2390	3298	H(C9)	1880	-1365	6096
H(C4)	4022	833	4319	H(C10)	745	-55	4940

Table 3. Bond distances (\AA), bond angles $\left({ }^{\circ}\right)$ and their estimated standard deviations

$\mathrm{Cu}-\mathrm{O}(1)$	$2.074(6)$	$\mathrm{N}(2)-\mathrm{C}(6)$	$1.354(9)$
$\mathrm{Cu}-\mathrm{O}(2)$	$2.634(8)$	$\mathrm{N}(2)-\mathrm{C}(10)$	$1.354(10)$
$\mathrm{Cu}-\mathrm{O}(5)$	$1.934(3)$	$\mathrm{N}(4)-\mathrm{O}(4)$	$1.408(13)$
$\mathrm{Cu}-\mathrm{N}(1)$	$2.052(6)$	$\mathrm{C}(1)-\mathrm{C}(2)$	$1.403(11)$
$\mathrm{Cu}-\mathrm{N}(2)$	$2.030(5)$	$\mathrm{C}(2)-\mathrm{C}(3)$	$1.389(9)$
$\mathrm{Cu}-\mathrm{N}(4)$	$2.177(13)$	$\mathrm{C}(3)-\mathrm{C}(4)$	$1.408(12)$
$\mathrm{O}(1)-\mathrm{N}(3)$	$1.265(11)$	$\mathrm{C}(4)-\mathrm{C}(5)$	$1.404(10)$
$\mathrm{O}(2)-\mathrm{N}(3)$	$1.174(11)$	$\mathrm{C}(5)-\mathrm{C}(6)$	$1.497(10)$
$\mathrm{O}(3)-\mathrm{N}(4)$	$1.103(18)$	$\mathrm{C}(6)-\mathrm{C}(7)$	$1.388(8)$
$\mathrm{O}(5)-\mathrm{C}(11)$	$1.441(11)$	$\mathrm{C}(7)-\mathrm{C}(8)$	$1.407(13)$
$\mathrm{N}(1)-\mathrm{C}(1)$	$1.3633(10)$	$\mathrm{C}(8)-\mathrm{C}(9)$	$1.373(12)$
$\mathrm{N}(1)-\mathrm{C}(5)$	$1.351(7)$	$\mathrm{C}(9)-\mathrm{C}(10)$	$1.407(9)$
$\mathrm{O}(1)-\mathrm{Cu}-\mathrm{O}(2)$	$49.5(2)$	$\mathrm{Cu}-\mathrm{N}(2)-\mathrm{C}(6)$	$115.1(5)$
$\mathrm{O}(1)-\mathrm{Cu}-\mathrm{O}(5)$	$93.3(1)$	$\mathrm{Cu}-\mathrm{N}(2)-\mathrm{C}(10)$	$125.5(4)$
$\mathrm{O}(1)-\mathrm{Cu}-\mathrm{N}(1)$	$168.7(2)$	$\mathrm{C}(6)-\mathrm{N}(2)-\mathrm{C}(10)$	$119.2(5)$
$\mathrm{O}(1)-\mathrm{Cu}-\mathrm{N}(2)$	$91.1(2)$	$\mathrm{O}(1)-\mathrm{N}(3)-\mathrm{O}(2)$	$113.18)$
$\mathrm{O}(1)-\mathrm{Cu}-\mathrm{N}(4)$	$88.1(4)$	$\mathrm{Cu}-\mathrm{N}(4)-\mathrm{O}(3)$	$137.2(10)$
$\mathrm{O}(2)-\mathrm{Cu}-\mathrm{O}(5)$	$88.2(2)$	$\mathrm{Cu}(4)-\mathrm{O}(4)$	$115.8(9)$
$\mathrm{O}(2)-\mathrm{Cu}-\mathrm{N}(1)$	$122.9(2)$	$\mathrm{O}(3)-\mathrm{N}(4)-\mathrm{O}(4)$	$105.2(11)$
$\mathrm{O}(2)-\mathrm{Cu}-\mathrm{N}(2)$	$91.9(2)$	$\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	$121.4(5)$
$\mathrm{O}(2)-\mathrm{Cu}-\mathrm{N}(4)$	$137.4(4)$	$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$119.3(7)$
$\mathrm{O}(5)-\mathrm{Cu}-\mathrm{N}(1)$	$94.8(1)$	$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$119.3(7)$
$\mathrm{O}(5)-\mathrm{Cu}-\mathrm{N}(2)$	$174.2(2)$	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	$118.5(5)$
$\mathrm{O}(5)-\mathrm{Cu}-\mathrm{N}(4)$	$90.9(3)$	$\mathrm{N}(1)-\mathrm{C}(5)-\mathrm{C}(4)$	$122.1(6)$
$\mathrm{N}(1)-\mathrm{Cu}-\mathrm{N}(2)$	$80.2(2)$	$\mathrm{N}(1)-\mathrm{C}(5)-\mathrm{C}(6)$	$114.8(6)$
$\mathrm{N}(1)-\mathrm{Cu}-\mathrm{N}(4)$	$99.7(4)$	$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	$123.1(5)$
$\mathrm{N}(2)-\mathrm{Cu}-\mathrm{N}(4)$	$92.9(3)$	$\mathrm{N}(2)-\mathrm{C}(6)-\mathrm{C}(5)$	$114.7(5)$
$\mathrm{Cu}-\mathrm{O}(1)-\mathrm{N}(3)$	$111.8(5)$	$\mathrm{N}(2)-\mathrm{C}(6)-\mathrm{C}(7)$	$121.5(7)$
$\mathrm{Cu}-\mathrm{O}(2)-\mathrm{N}(3)$	$85.6(6)$	$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	$123.7(7)$
$\mathrm{Cu}-\mathrm{O}(5)-\mathrm{Cu}$	$123.2(3)$	$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	$119.1(7)$
$\mathrm{Cu}-\mathrm{O}(5)-\mathrm{C}(11)$	$118.4(2)$	$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	$119.6(7)$
$\mathrm{Cu}-\mathrm{N}(1)-\mathrm{C}(1)$	$126.0(4)$	$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	$118.5(8)$
$\mathrm{Cu}-\mathrm{N}(1)-\mathrm{C}(5)$	$114.6(5)$	$\mathrm{N}(2)-\mathrm{C}(10)-\mathrm{C}(9)$	$122.0(7)$

Table 4. Equations of least-squares planes and, in squarc brackets, distances (\AA) of atoms from the planes

The equations are referred to the crystal axes and x_{2}, y, z are fractional coordinates.

$$
\begin{aligned}
& \text { Plane } 1: \mathrm{Cu}, \mathrm{Cu}^{\prime}, \mathrm{O}(4), \mathrm{O}(5), \mathrm{N}(4) \\
& \qquad \begin{array}{l}
15.778 x-0.017!\cdot-I 2.960 z=-3 \cdot 243
\end{array} \\
& \left|\mathrm{Cu}-0.054, \mathrm{Cu}^{\prime} 0.054, \mathrm{O}(4)-0 \cdot 133, \mathrm{O}(5)-0.001, \mathrm{~N}(4) 0 \cdot 133\right|
\end{aligned}
$$

$$
\begin{aligned}
& \text { Plane 2: } \mathrm{Cu}, \mathrm{O}(1), \mathrm{O}(5), \mathrm{N}(1), \mathrm{N}(2) \\
& -0.596 x+7.340!+8.387 z=4.066 \\
& |\mathrm{Cu}-0.078 . \mathrm{O}(1) 0.057, \mathrm{O}(5)-0.015, \mathrm{~N}(1) 0.060, \mathrm{~N}(2)-0.023| \\
& \text { Plane 3: } N(1), N(2), C(1) \text { to } C(10) \\
& -0 \cdot 106 x+1 \cdot 630 y+9 \cdot 0983 z=4 \cdot 376 \\
& \mid \mathrm{N}(1)-0.031, \mathrm{~N}(2)-0.010, \mathrm{C}(1)-0.013, \mathrm{C}(2) 0.041 \text {, } \\
& \mathrm{C}(3) 0.048 . \mathrm{C}(4)-0.011, \mathrm{C}(5)-0.029 . \mathrm{C}(6)-0.035 \text {, } \\
& \mathrm{C}(7)-0.047 . \mathrm{C}(8) 0.006, \mathrm{C}(9) 0.053, \mathrm{C}(10) 0.029 \mid
\end{aligned}
$$

relevant atoms from them, in Table 4.* Atomic scattering factors were calculated as usual (Moore, 1963).

All calculations were carried out on a CDC 6200 computer with the programs described previously (Albano, Domenicano \& Vaciago, 1966).

Results and discussion

The crystals are built up of dimers formed by two $\left[\mathrm{Cu}\left(\mathrm{NO}_{2}\right)\right.$ (bipy)] moieties, related by a twofold crystallographic C_{2} symmetry axis and bridged by one MeO and one NO_{2} group. The MeO group, lying along the C_{2} axis, binds both Cu atoms through its O atom; the NO_{2} bridge has the unsymmetrical arrangements shown in Fig. 2, with a half-occupancy of the two possible orientations (a) and (b).

The CuNOCuO cycle is nearly planar.
The coordination polyhedron around the Cu atom can be described as a slightly distorted square pyramid. Two of its equatorial sites are occupied by the bipyridine N atoms, the others by one methoxo and one σ-bonded nitrito group, whereas the axial position is occupied in turn by the N or one O atom of a μ-nitrito group. The $\mathrm{Cu} \cdots \mathrm{Cu}$ distance $[3.403$ (1) $\AA]$ is significantly longer than that in μ-oxo-bridged Cu complexes ($2.847-3.000 \AA$) (Hodgson, 1975). This is obviously because of the presence of the bulky nitrito bridge, which causes the Cu atoms to stay further apart, as in the octahedral $\mathrm{Co}^{\text {III }}$ complex $\mid\left(\mathrm{NH}_{3}\right)_{4}{ }^{-}$ $\mathrm{Co}\left(\mathrm{NH}_{2}\right)\left(\mathrm{NO}_{2}\right) \mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{4} \cdot 4 \mathrm{H}_{2} \mathrm{O} \quad(\mathrm{Co} \cdots \mathrm{Co}=$ $3.279 \AA$), where a similar double bridge is present (Thewalt \& Marsh, 1970). Comparable $\mathrm{Cu} \cdots \mathrm{Cu}$ distances are also present in pyridine N-oxide complexes (3.2-3.5 \AA) in which, however, the $\mathrm{Cu}-\mathrm{O}$ bond distances are largely non-equivalent (Andrew \& Blake, 1973, and references therein). The $\mathrm{Cu}-\mathrm{OMe}$ distance $\mid 1.934$ (3) \AA | is not affected by the large $\mathrm{Cu} \cdots \mathrm{Cu}$ distance and is comparable with the mean value ($1.927 \AA$) found in binuclear Cu complexes containing two hydroxo bridges (Majeste \& Meyers, 1970; Casey, Hoskins

[^1]
(a)

(b)

Fig. 2. The unsymmetrical arrangements of the NO_{2} bridge.
\& Whillans, 1970; Lewis, Hatfield \& Hodgson, 1972). Furthermore, the $\mathrm{Me}-\mathrm{O}$ distance $[1.44$ (1) \AA] is in agreement, within the e.s.d., with that of a $\mathrm{C}-\mathrm{O}$ single bond $[\mathrm{MeOH} 1.428$ (3), $\mathrm{Me}-\mathrm{O}-\mathrm{Me} 1.416$ (3) \AA] (Sutton, 1965). The $\mathrm{N}-\mathrm{O}$ bond distances [1.41(1) and $1 \cdot 10$ (2) \AA § are those of a single and double bond respectively (Padmanabhan, Smith \& Peterson, 1967; Sutton, 1965), in agreement with Fig. 2. The other two NO_{2} groups are asymmetrically localized around the Cu atoms $[\mathrm{Cu}-\mathrm{O}(1) 2.074$ (6), $\mathrm{Cu}-\mathrm{O}$ (2) 2.634 (8) $\AA \AA$. The weak $\mathrm{Cu}-\mathrm{O}$ bond (Brown, Lee, Melsom, Hathaway, Procter \& Tomlinson, 1967) and the $\mathrm{O}(1)-\mathrm{N}(3)-\mathrm{O}(2)$ angle of $113 \cdot 1(8)^{\circ}$ (Stephens, 1969) suggest a 'semi-coordination' of the NO_{2} groups to the metal atom. Consequently there are also different $\mathrm{N}-\mathrm{O}$ bond distances $[\mathrm{O}(1)-\mathrm{N}(3) \quad 1.265(11), \mathrm{O}(2)-\mathrm{N}(3)$ $1 \cdot 174$ (11) \AA], the O atom more strongly bonded to Cu giving rise to a longer $\mathrm{N}-\mathrm{O}$ bond. Conductivity measurements indicate that a partial dissociation of the 'semi-coordinated' NO_{2} groups occurs in methanol solution. In a basic medium there is also substitution of the two Cu bridging groups by hydroxo groups, as proved by the detection of free methanol and by the isolation of crystals of $\left[\mathrm{Cu}(\right.$ bipy $)(\mathrm{OH}) \mathrm{NO}_{2} \mathrm{I}_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ (Marsich \& Camus, 1976) from the solution.

Each bipyridine ligand acts as a symmetric bidentate chelate through the N atoms. The $\mathrm{Cu}-\mathrm{N}$ bond distances $[\mathrm{Cu}-\mathrm{N}(1) 2.052(6), \mathrm{Cu}-\mathrm{N}(2) 2.030(5) \AA]$ and the $\mathrm{N}(1)-\mathrm{Cu}-\mathrm{N}(2)$ angle $\left[80.2(2)^{\circ}\right]$ are in good agreement with the values found for other Cu^{11} complexes with bipyridine and phenanthroline (Thewalt \& Marsh, 1970; McFadden \& McPhail, 19.75). The bipyridine molecules also show usual bond distances and angles. Each of the six-membered rings of the bipyridine group is planar, with no atom being displaced more than $0.01 \AA$ from its least-squares plane, but they are slightly mutually twisted about the $2,2^{\prime}$ carbon bond (dihedral angle $3 \cdot 7^{\circ}$). The bipyridine molecule is approximately normal to the plane containing the double bridge (dihedral angle $100 \cdot 6^{\circ}$). This situation is different from that observed in $[\mathrm{Cu}(\mathrm{bipy})$ $(\mathrm{OH}) 1_{2} \mathrm{SO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ (Casey, Hoskins \& Whillans, 1970) and $\mid \mathrm{Cu}($ bipy $)(\mathrm{OH}) \mathrm{NO}_{3} l_{2}$ (Majeste \& Meyers, 1970), where the bipyridine N atoms and the O atoms involved in the μ double bridge lie in the basal plane. In the present case the steric interaction between the $\mathrm{Me}-\mathrm{O}$ group and the $\mathrm{H}(\mathrm{C} 1)$ atom hinders the arrangement observed in the two above complexes, where the two bipyridyl rings are approximately coplanar. In contrast, in the present structure the two bipyridine di gands are markedly bent (mean dihedral angle $62 \cdot 0^{\circ}$), allowing efficient phenyl-phenyl-type contacts among bipyridine molecules of different dimers.

The IR spectrum of complex I shows, in addition to the peaks from the coordinated bipyridine, main absorption bands at about $1374 \mathrm{~s}, \mathrm{br}: 1230 \mathrm{~s}, \mathrm{br}: 1155 \mathrm{~s}$, $b r: 904 \mathrm{~m}, d$ (a sharp band superimposed on a broad
one): $542 \mathrm{~m}, \mathrm{br}$; and $330 \mathrm{~m}, \mathrm{br} \mathrm{cm}^{-1}$. On the basis of the structure found and a comparison with spectra of related complexes, the above frequencies have been tentatively assigned as follows: 1374 and $1155 \mathrm{~cm}^{-1}$: $1\left(\mathrm{NO}_{2}\right)_{\text {assm }}$ and $v\left(\mathrm{NO}_{2}\right)_{\mathrm{sym}}$ respectively of the semicoordinated NO_{2} groups (Hathaway, Procter. Slade \& Tomlinson, 1969): $1230 \mathrm{~cm}^{-1}: \nu\left(\mathrm{NO}_{2}\right)_{\mathrm{svm}}$ of the bridging NO_{2} group (Goodgame \& Hitchman, 1967): broad band at $904 \mathrm{~cm}^{-1}: \nu(\mathrm{CO})$ of the MeO group (usually found at higher frequencies: Andrew, Blake \& Fraser, 1976): $542 \mathrm{~cm}^{-1}$ (split): $\nu(\mathrm{CuO})$ |shifted to higher values with respect to those found for μ-dihydroxocopper derivatives (Ferraro \& Walker, 1965)]: 330 $\mathrm{cm}^{-1}: \nu\left(\mathrm{Cu}\right.$-bridging $\left.\mathrm{NO}_{2}\right)$. The electronic reflectance spectrum of the complex shows only a broad asymmetric band, characteristic of the envelopment of $d-d$ transitions. Its maximum, at ca 670 nm , is in agreement with the pentacoordination found to be present (Gibson \& McKenzie, 1971, and references therein). The maximum shifts to 645 nm in methanol or water, probably because of coordination of the solvent to the sixth position on the Cu atoms, and to 613 nm in a diluted sodium hydroxide solution, where the hydrated |(bipy)$\mathrm{Cu}(\mathrm{OH}) 2_{2}^{++}$species is formed (see also Harris, Sinn, Walker \& Woolliams, 1968).

We thank Mr V . Rebula for technical assistance in data collection and the CNR (Roma) for partial financial support of this work.

References

Albano, V., Domenicano, A. \& Vaciago, A. (1966). Gazz. Chim. Ital. 96, 922-934.
Andrew. J. E. \& Blake, A. B. (1973). J. Chem. Soc. Dalton, pp. 1102-1107.
Andrew, J. E., Blake, A. B. \& Fraser, L. R. (1976). J. Chem. Soc. Dalton, pp. 477-480.
Brown, D. S., Lee, J. D., Melsom, B. G. A., Hathaway, B. J., Procter, I. M. \& Tomlinson, A. A. G. (1967). Chem. Commun. pp. 369-371.
Camus, A., Marsich, N. \& Mosca, R. (1976). J. Inorg. Nucl. Chem. 38, 1967-1969.
Camus, A., Marsich, N., Nardin, G. \& Randaccio, L. (1975). J. Chem. Soc. Dalton, pp. 2560-2565.

Camus, A., Marsich, N., Nardin, G. \& Randaccio, L. (1976). Inorg. Chim. Acta, 17, L33-L34.

Casey, A. T., Hoskins, B. F. \& Whillans, E. D. (1970). Chem. Commun. pp. 904-905.
Ferraro, J. R. \& Walker, W. R. (1965). Inorg. Chem. 4. 1382-1386.
Gibson, J. G. \& McKenzie, E. D. (1971). J. Chem. Soc. (A), pp. 1666-1683.

Goodgame, D. M. L. \& Hitchman, M. A. (1967). Inorg. Chem. 6, 813-816.
Harris, C. M., Lockyer, T. N. \& Waterman, H. (1961). Nature, Lond. 192, 424-425.
Harris, C. M., Sinn, E., Walker, W. R. \& Woolliams, P. R. (1968). Aust.J. Chem. 21. 631-640.

Hathaway, B. J., Procter, I. M., Slade, R. C. \& Tomlinson, A. A. G. (1969). J. Chem. Soc. (A), pp. 2219-2224.
Hodgson, D. J. (1975). Progress in Inorganic Chemistry, Vol. 19, pp. 173-241. New York: S. J. Lippard.
Lewis, D. L., Hatfield, W. E. \& Hodgson, D. J. (1972). Inorg. Chem. 11, 2216-2221.
McFadden, D. L. \& McPhail, A. T. (1975). J. Chem. Soc. Dalton, pp. 1993-1998.
Majeste, R. J. \& Meyers, E. A. (1970). J. Phys. Chem. 74, 3497-3500.
Marsich, N. \& Camus, A. (1976). J. Inorg. Nucl. Chem. In the press.
Moore, F. H. (1963). Acta Cryst. 16, 1169-1175.

Padmanabhan, W. M., Smith, H. G. \& Peterson, S. W. (1967). Acta Cryst. 22, 928-930.

Procter, I. M., Hathaway, B. J., Billing, D. E., Dudley, R. \& Nicholls, P. (1969). J. Chem. Soc. (A), pp. 11921197.

Procter, I. M. \& Stephens, F. S. (1969). J. Chem. Soc. (A), pp. 1248-1255.

Stephens, F. S. (1969). J. Chem. Soc. (A), pp. 2081-2087.
Sutton, L. E. (1965). Tables of Interatomic Distances and Configuration in Molecules and Ions. Spec. Publ. No. 18, pp. M66s, M89s, S8s. London: The Chemical Society.
Thewalt, U. \& Marsh, R. E. (1970). Inorg. Chem. 9, 1604-1610.

Conformational Studies of Oligomethylene Glycol Derivatives and Related Compounds. VI. The Crystal and Molecular Structure of Hexamethylene Glycol Dibenzoate, $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{O}_{4}$

By Serge Pérez and François Brisse
Département de Chimie, Université de Montréal, CP 6210, Succ. A, Montréal, Québec, Canada H3C 3V1

(Received 2 September 1976; accepted 2 November 1976)

Abstract

The diester hexamethylene glycol dibenzoate, $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{O}_{4}$, crystallizes in the orthorhombic space group Pbca with four molecules per unit cell of dimensions $a=8.728(3), b=19.676(5), c=10.551$ (3) \AA. The structure, solved by direct methods, was refined by block-diagonal least squares to a final R_{w} value of 0.049 . The molecule, which has a crystallographic centre of symmetry, is in the all-trans conformation. The molecules are packed in a herring-bone manner. Van der Waals interactions maintain the molecules together in the crystal. The conformational resemblance of this molecule to the polymer poly(hexamethylene glycol terephthalate) is discussed.

Introduction

One method of determining polymer structures is to study crystal structures of small related molecules or oligomers. This provides accurate information about the molecular geometry of these model compounds. Bond lengths and angles, specific to the chemical species studied, are used as standards for further conformational analysis and as constraints in the leastsquares refinement of polymer structures. Previous research has shown some evidence that the solid-state conformation of the polymer could be close to that of the related model compound or oligomer. However, because of the difficulty of obtaining good oligomer crystals (in the case of biopolymers) or perhaps as a result of some lack of communication between polymer crystallographers and single-crystal crystallographers, this approach has not yet been fully explored. In order to investigate the similarities or differences between the solid-state conformation of the polymer and that of the related model compound we have undertaken a sys-
tematic study of oligomethylene glycol derivatives related to the poly(oligomethylene terephthalates): $\left[\mathrm{O}-\left(\mathrm{CH}_{2}\right)_{p}-\mathrm{O}-\mathrm{CO}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{CO}\right]_{n}$, with $p=2$ to 10 . For ethylene glycol dibenzoate (Pérez \& Brisse, 1976a), trimethylene glycol dibenzoate and trimethylene glycol di-p-chlorobenzoate (Pérez \& Brisse, 1977, 1976b) the conformations were found to be closely related to those of the polymers poly(ethylene terephthalate) and poly(trimethylene terephthalate) respectively.

As a continuation of our systematic studies of oligomethylene glycol derivatives, we present here the crystal and molecular structure of hexamethylene glycol dibenzoate, which is considered to be a model compound for poly(hexamethylene glycol terephthalate): $\left[\mathrm{O}-\left(\mathrm{CH}_{2}\right)_{6}-\mathrm{O}-\mathrm{CO}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{CO}\right]_{n}$.

Experimental

Crystals of hexamethylene glycol dibenzoate, $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{O}_{4}$, were obtained by slow evaporation of an

[^0]: $\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{Cu}_{2} \mathrm{~N}_{7} \mathrm{O}_{7}$, FW 608.5
 Space group C2/c (No. 15)
 $a=16.633$ (8) , $b=8.320(6), c=18.986$ (9) \AA,
 $\beta=114.6(1)^{\circ}$
 $U=2388 \AA^{3}, Z=4$
 $D_{m}=1.71$ (by flotation), $D_{r}=1.69 \mathrm{~g} \mathrm{~cm}^{-3}$
 Mo K(I radiation, $\lambda=0.71069 \AA$
 $\mu\left(M o K(1)=19.4 \mathrm{~cm}^{-1}, F(000)=1232\right.$

[^1]: * A list of structure factors has been deposited with the British Library Lending Division as Supplementary Publication No. SUP 32296 (7 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 13 White Friars, Chester CHI 1NZ, England.

